

Energy Monitoring Solutions

Wes Allen – Endress + Hauser

Why an energy monitoring solution

Make a business case for energy monitoring

"If you can measure that of which you speak, and can express it by a number, you know something of your subject; but if you cannot measure it, your knowledge is meager and unsatisfactory" LORD KELVIN

If You Don't Measure it - You can't Control it!

Meters don't save energy or money!

They just provide data!

It's what's done with the data that's key!

Data analysis, reporting & management is the key

- Data is not knowledge, knowledge is information learned from patterns in data EMIS Handbook,
 CIPEC
- "We are drowning in information but starved for knowledge." John Naisbitt author Megatrends
- "We have for the first time an economy based on a key resource [Information] that is not only renewable, but self-generating. Running out of it is not a problem, but drowning in it is." John Naisbitt author Megatrends
- "Computer Technology is to the information age what mechanization was to the industrial revolution" – John Naisbitt author Megatrends

Endress+Hauser

Simple energy profile analysis

 $^{1\!\!/\!2}$ hourly interval consumption data

Endress+Hauser

More powerful analysis tools determine relationships

Activity – compressing air, generating steam, Ton of product, degree days

Endress+Hauser

Energy monitoring approach

Components of **an energy monitoring** system

Utility metering

Wide range of utility meters available

Electricity meters

Some technologies are developed for specific utilities

OLS/LU

Multi-variable Profibus meters

Software tools to visualize diagnostic data

National Grid gas meter with Volume corrector

Why use corrected volume?

Normal volume, Nm³/h (Q_{ref}) is volume at $p_{ref} = 1.013$ Bara and $T_{ref} = 273$ K or 0^{oC}

Standard volume, Scfm (Q_{ref}) is volume at $p_{ref} = 1.013$ Bara and $T_{ref} = 288$ K or $15^{\circ C}$

If P is measured in Barg Then Barometric Pressure must be known Barometric Pressure could be 0.925 to 1.053Bara Even if Flow computers are used The change in Density, Mass & Energy due To Barometric Pressure could be +/-6%

Interval data collection

Types of Data Collection - Examples

Manual reading of meters

Semi-automatic collection using Data logger & USB stick

Automatic data collection using a Profibus Gateway

Automatic data collection Using SCADA

Incorporating legacy devices on to network

Gateways provide remote data access and maintenance

Endress+Hauser

Simple boiler performance monitoring solution

Performance monitoring of chiller plant

Monitoring CHP engine performance on biogas

	as Data	Datio u/u		×
	Element 1 METHANE	▼ 65.	Heat Capacity(J/kg.K)) :	2 70555e-002
	Element 2: CARBON DI	DXIDE 🔻 35.	Viscosity(N.s/m2)) :	1.27913e-005
	Element 3:	▼ 0.	-Units	
	Element 4:	▼0.	Press: bara 💌	Temp: <mark>℃ ▼</mark>
hinod	Element 5:	▼ 0.	-Reference Conditions	
	Element 6:	0.	Temperature Normal : 0.00	Pressure 1.013
	Element 7:	▼ 0.	Standard : 15.	1.013
	Element 8:	▼ 0.		
	Name: MIXTURE	100. %	Normal Density :	1.15614 kg/m3
	Pressure : 1.018	5	Standard Density :	1.09533 kg/m3
	Temperature : 20.		Process Density :	1.08233 kg/m3
	Process Factor : 1.012	45	ок	Cancel
Property 4. New Heel Informatio				

Data Analysis

Obtaining KPI's in a Production Area

Energy analysis reports

Knowledge justifies investment in improvements

example of some of the common improvements associated with boiler plant

Global energy monitoring solutions

Questions?

Flow

Thank You

