

Profibus- Profinet User Conference, 30th June, Steve Moore

The Use of Profibus in a Renewable Energy Application

PROFIBUS - PROFINET User conference

Introduction

- Application description
- System Development
- Decision Making
- Control & Monitoring Requirements
- Process Optimisation
- Application Video

Application Description

Renewable Applications

- The renewable energy market presents an extremely large opportunity for power electronic equipment suppliers
- Examples of current Renewable Energy applications
 - Wind
 - Tidal
 - Hydro
 - Solar (Photovoltaic and Thermal)
 - Biomass

Hydro Applications

Typical hydro turbine application examples

Kaplan

Pelton

Francis

Archimedes Screw Generator

- Solution been used as a method of raising water for centuries
- Recent trials have proven that they can also be used for generating electrical power

Typical Screw Generator Installation

- Screw rotates at low speeds (typically 25-35 rpm)
- Typical powers from 1-100's kW
- Two generator options available in conjunction with a gearbox
 - Induction generator
 - Commonly available in 4 to 8 pole designs
 - High efficiency
 - Permanent magnet synchronous generator
 - Lower speed options available
 - More complex machine
 - High efficiency

- Before the first trial system order two options were investigated
- Option 1
 - 4 pole induction generator with three stage gearbox
- Option 2
 - ~300 rpm base speed PM generator with two stage gearbox
- Overall system efficiency was calculated at different loads and speeds
- Which one do you think was used ?

- With this type of hydro turbine you cannot control the prime mover to give a constant screw speed (same as a wind turbine).
- This means the use of an inverter to control the generator and return energy to the grid.
- This is done using standard variable speed drive hardware.

System Development – Regenerative AC drive

Decision Making

Decision Making

- The decision was made to use induction generator with higher ratio gearbox
- Why ?
 - String efficiency was only 1-2% lower than for the PM design but the initial cost was approx 50% higher for the drive and motor
 - Motor was readily available (ex stock), easy to maintain and serviceable by existing site workforce
 - VSD spares already available locally

Decision Making

- End user
 - YW Esholt WWTW
- OEM
 - Spaans Babcock Ltd
- Main Contractor
 - JN Bentleys Ltd
- Panel Builder
 - CEMA Ltd
- 2 x 90kW generators in series
- Approx 2,700 l/sec flow
- 10m drop

- End User specified Mitsubishi PLC's for the site and required the control and monitoring to be performed from this device
- PLC to send
 - Command word
 - Speed reference
- PLC to receive
 - Actual motor power, torque and current
 - Motor nominal power
 - Fault code
 - Digital input status
 - Regenerative power

Decision made to use Profibus for this functionality and implemented in the drive as follows

PriveWindow - [<disconnected> (File: Esholt - as left 29_5_09)]</disconnected>			
<u>File Edit View N</u> etwork Drive <u>D</u> esktop <u>M</u> onitor Datalogger <u>H</u> elp			
		×	
27: BRAKE CHOPPER	Browsed Control Faul	he l	
🔲 30: FAULT FUNCTIONS	Control 1 da	no	
- 📋 31: AUTOMATIC RESET	Name	Value	OPC Address
			Par.51.1
	S1.02: Node address	5	Par.51.2 Par.51.3
	51.04: PPO-type	5	Par.51.4
	51.05: PZD3 OUT	0	Par.51.5
35: MOT TEMP MEAS	51.06: PZD3 IN	106	Par.51.6
🔲 40: PID CONTROL	51.07: PZD4 OUT	0	Par.51.7
🚞 42: BRAKE CONTROL	51.08: PZD4 IN	104	Par.51.8
51: COMM MODULE DATA	51.09: PZD5 OUT	0	Par.51.9
52; STANDARD MODBUS	51.10: PZD5 IN	320	Par.51.10
	51.11: PZD6 OUT	0	Par.51.11
	51.12: PZD6 IN	117	Par.51.12
	S1.13; P2D7 001	0	Par.51.13
72: USER LOAD CURVE		9909	Par.51.14
83: ADAPT PROG CTRL	51.16: P7D8 IN	105	Par 51.16
💼 84: ADAPTIVE PROGRAM	51.17: PZD9 OUT	0	Par.51.17
🛁 85: USER CONSTANTS	🛱 51.18: PZD9 IN	913	Par.51.18
	51.19: PZD10 OUT	0	Par.51.19
	51.20: PZD10 IN	0	Par.51.20
	51.21: DP MODE	0	Par.51.21
95: HARDWARE SPECIF	51.22: FIELDBUS PAR22	<read-protected></read-protected>	Par.51.22
98: OPTION MODULES	51.23: FIELDBUS PAR23	<read-protected></read-protected>	Par.51.23
99: START-UP DATA	51.24: FIELDBUS PAR24	<read-protected></read-protected>	Par.51.24
🧰 101: Group 101 Backup	S1.25: FIELDBUS PAR25	<read-protected></read-protected>	Par.51.25
			Par.51.20
— 112: Group 112 Backup	51.28: FILE CPLEW REV	114b	Par.51.28
	51.29: FILE CONFIG ID	101h	Par.51.29
	51.30: FILE CONFIG REV	10h	Par.51.30
191: Group 191 Backup	51.31: FBA STATUS	ON-LINE	Par.51.31
🔲 192: Group 192 Backup	51.32: FBA CPI FW REV	128h	Par.51.32
Properties	1 51.33: FBA APPL FW REV	216h	Par.51.33
Reset graph zooming	ि हो File:	: Esholt - as left 29_5_09	

System HMI display as follows

Process Optimisation

Process Optimisation

- How can we be sure that we are extracting the maximum energy from the system ?
- ABB and Spaans Babcock have worked together to model the power output from the system at different loads and speeds
- Screw speed should follow the flow rate of the river but this is often difficult and expensive to obtain
- It has been found by calculation that the maximum power can be extracted by controlling the height of the water in the penstock preceding the turbine itself
- An ongoing project is to collect the site data to back up the calculations
- This data is already available over the Profibus link

Application Video

Application Video

Application Video

Power and productivity for a better world[™]

