

PROFINET DiagnosticsSoftware and Tools

Dr. Xiu Ji

Content

- > Static wiring test, diagnostics
- > Live system diagnostics
- ➤ Basics of PROFINET

What is PROFINET?

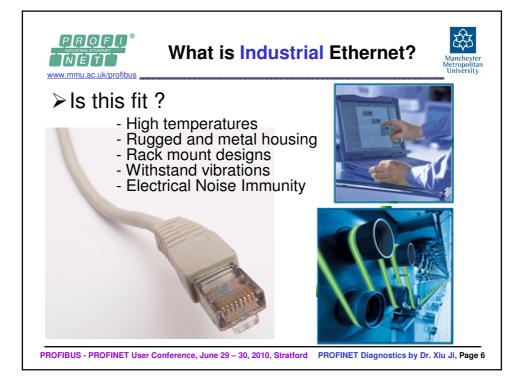
- > PROFINET is Standard Ethernet (IEEE 802.3).
- PROFINET is based on the "Fast Ethernet" or 100 BASE TX/FX.
- > PROFINET is an Industrialised Ethernet, optimised for speed, determinism and durability.

PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 3

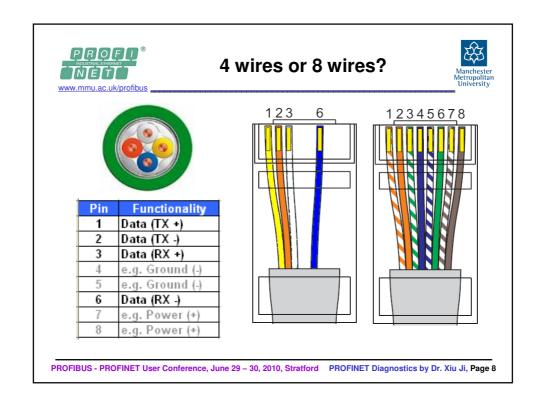
Important IEEE 802.3 specs

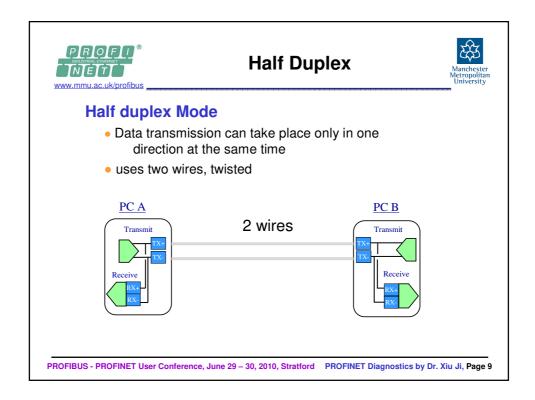
Spec number	Speed	Standard description
IEEE 802.3 (a,b,i,j)	10 Mbps	10 Base Ethernet (there are different numbers associated with copper, fiber, coax and variants)
IEEE 802.3u	100 Mbps	100 Base TX / FX
		Fast Ethernet for copper (TX) and fiber (FX)
IEEE 802.3z	1000 Mbps	1000 Base X - Gigabit Ethernet
IEEE 802.3ab		over fiber (z) and copper (ab)
IEEE 802.3ae	10000 Mbps	10BaseLR (etc) Ten Gigabit Ethernet over Fiber
IEEE 802.3x		Flow Control / Full Duplex

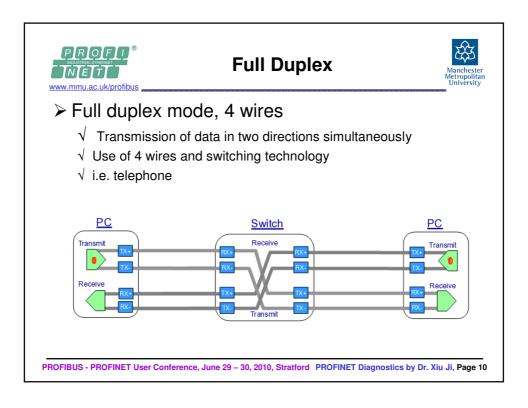
PROFINET is based on 100BASE-TX/FX, i.e. Fast Ethernet

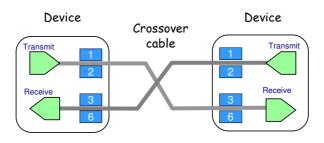

- Fibre optic medium

Twisted 2-pair copper Cat 5 cable
 Max. cable length of 100m between devices


100 mbps

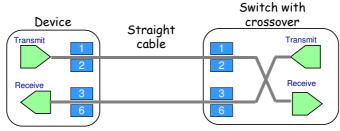

X: means any medium, copper or fibre, but redundant with 'T' or 'F'. 100BASE can also use un-twisted enhanced Cat 5 cable, i.e. Cat 5e. STP: Shielded Twisted Pair, e.g. 100BASE-TX, STP. PROFINET only uses STP cables.


UTP: Unshielded Twisted Pair, e.g. 100BASE-TX, UTP.



Straight and Crossover Cables

- ➤ Ethernet devices must be connected so that the transmitter in one device is connected to the receiver in another.
- ➤ When connecting one device directly to another (e.g. a PC to a field device), a "cross-over" cable is required:


PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 11

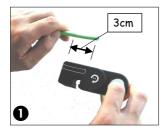
Straight and Crossover Cables

- ➤ When using a switch or hub to connect devices, the switch normally provides the crossover for us.
- > Therefore, when using switches, "straight" cables are used to connect the device to the switch:

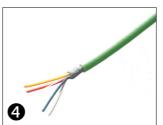
Modern switches provide "auto-crossover", where they are able to automatically provide crossover as required.

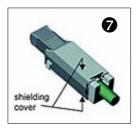
Cable Test Tools

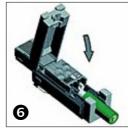
- > There are many different cable test tools available for checking Ethernet cables.
- ➤ These range in price from less than £100 pounds to over £3000.



PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 13

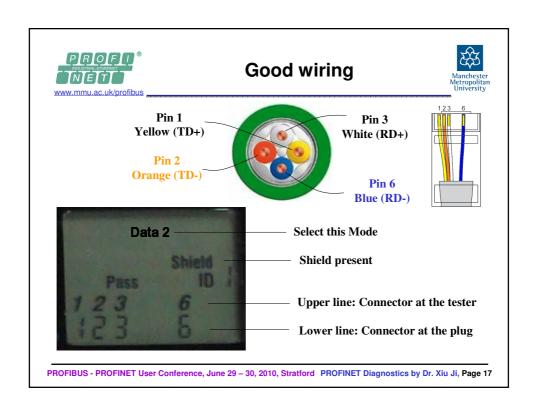

Stripping Tools

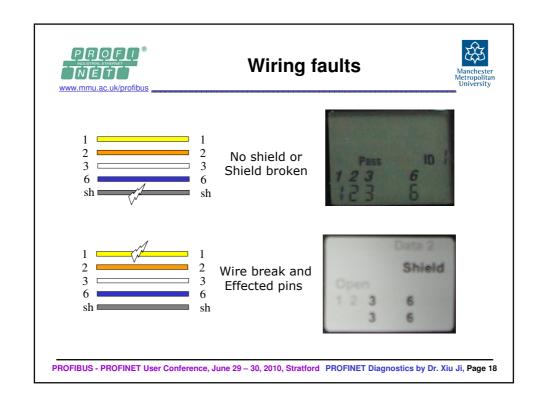




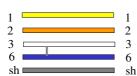
Insulation Displacement Connectors

PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 15




Cable Tester

- > Connect the test plug at one end and the tester at the other end.
- > Detect many wiring faults:
 - √ Wire break
 - √ Short circuit
 - √ Swapped wires

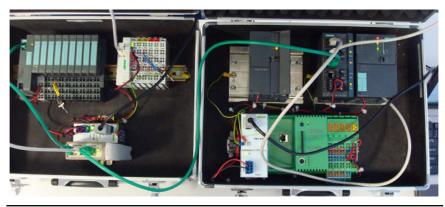


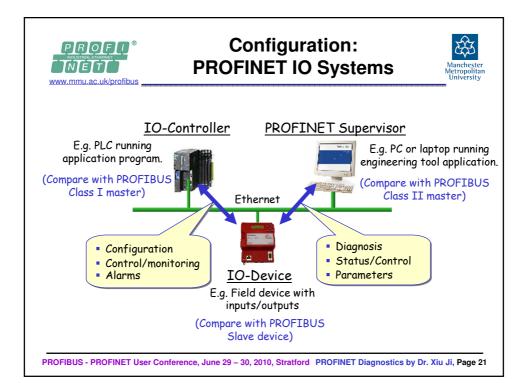



Wiring faults

Short circuit, Second line indicated as --

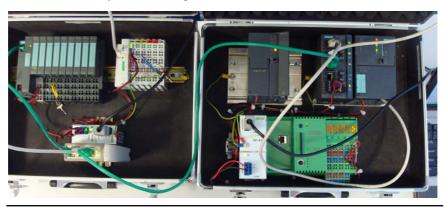
Yellow and White swapped

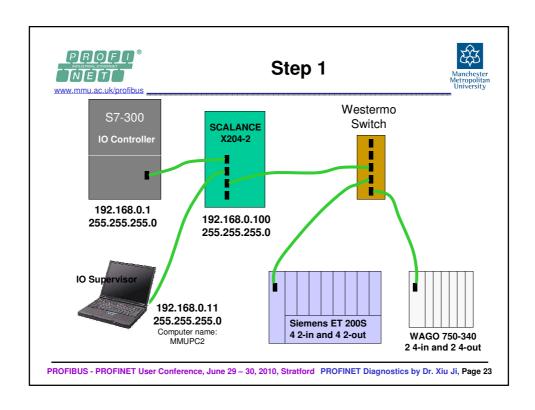

PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 19

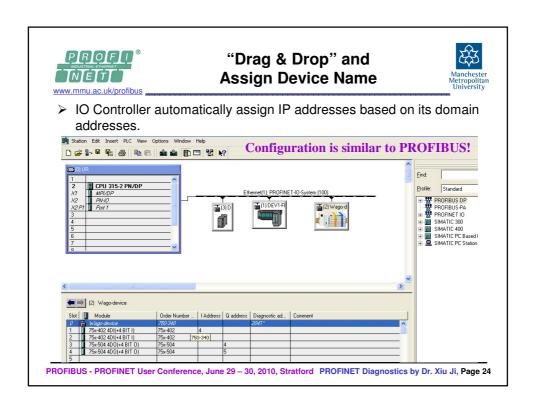


Practical Exercise

- Make up a cable and test on a live system.
- > Watch for the connectivity indicators on the switch.



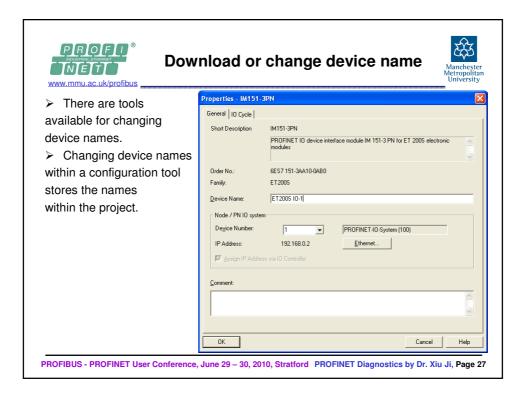


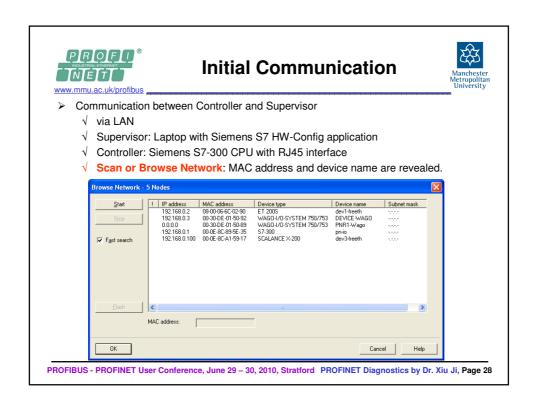

A PROFINET IO System

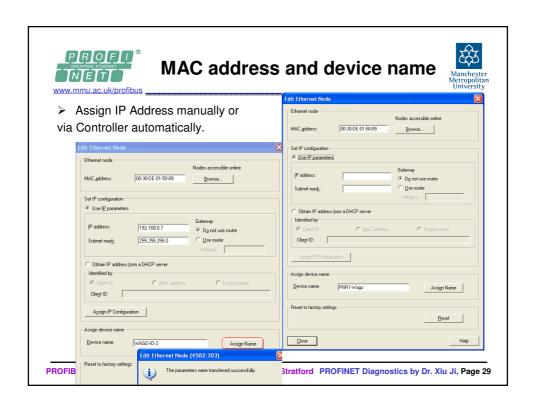
- > Siemens S7-300 CPU 315-2 PN/DP Controller
- > Siemens managed switch, SCALANCE X204-2
- Westermo 5-port unmanaged switch, SDW-500

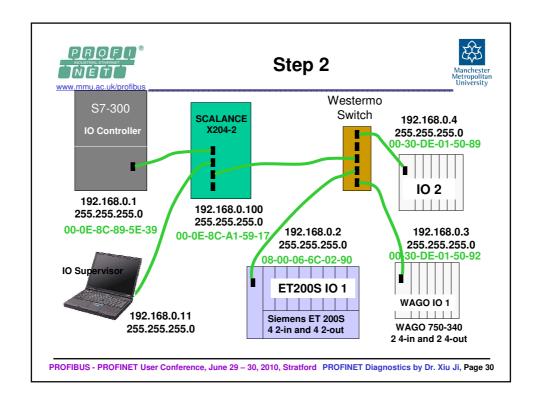
Addressing

- Device addresses are NOT set by DIP switch. Instead, "Device Name" concept is used.
- > IO devices much have a device name.
- > Every device has a unique MAC address. (Media Access Control)
- > MAC Address must be printed on every IO device.
- > MAC Address is used for real-time communication.
- > IP Address is used only for non-real-time data exchange, e.g. configuration and parameterisation.
- > IP addresses are allocated by IO Controller every time during start-up or restart.

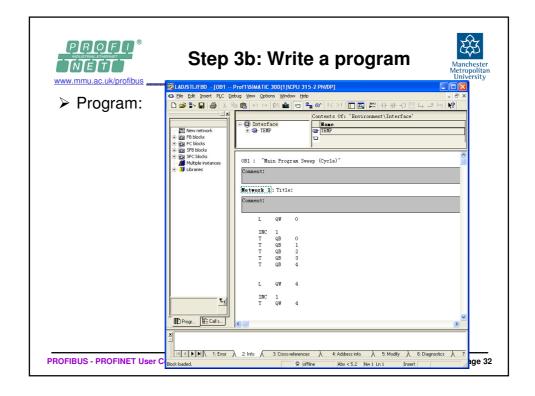

PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 25




Addressing



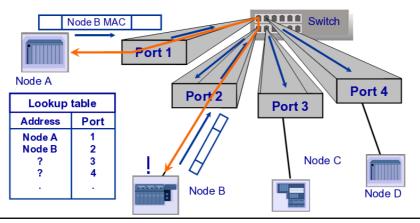
- Start-up always takes place over the non-real-time TCP/UDP/IP channel.
- ➤ MAC addresses and device names (at default or if assigned) are revealed at this stage.
- > IP addresses are then allocated based on their MAC addresses.
- ➤ The device name is vital in setting up IP addresses.
- > Device name must be set correctly.
- Once the device name and IP address are correct the IO controller can initiate communication with the device.

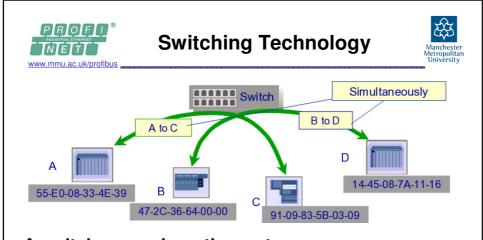


Step 3a: Write a program

Write a simple program in OB1 and download it to Controller.

```
L
     QW0
                 //load Output Word 0
INC 1
                 //increment it with 1
Τ
     QB0
                 //write it to Output Byte 0
Т
     QB1
                 //write it to Output Byte 1
Τ
     QB2
                 //write it to Output Byte 2
Τ
     QB6
                 //write it to Output Byte 3
Т
     QB7
                 //write it to Output Byte 4
Т
     QW8
                 //load Output Word 4
                 //load Output Word 4
    QW4
L
INC 1
                 //increment it with 1
                 //write it to Output Word 4
    QW4
```




Learning MAC Addresses

Switch knows which device is on which port and hence directs traffic/data to where is intended to be rather than flooding the network.

PROFIBUS - PROFINET User Conference, June 29 – 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 33

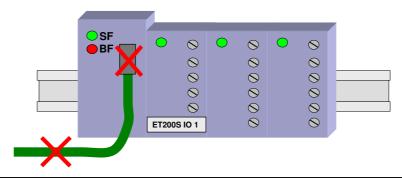
A switch remembers the ports:

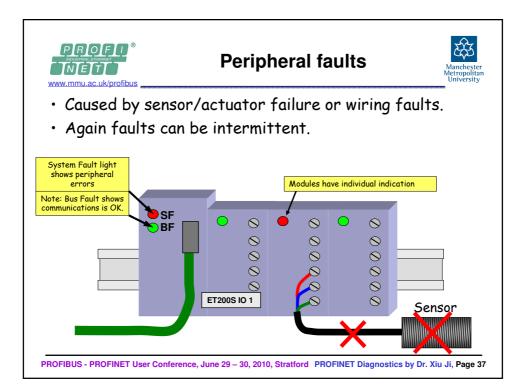
- If swapping plugs, it takes time to re-figure out the ports
- Power off a device first, swap plugs if required, and then power on the device.

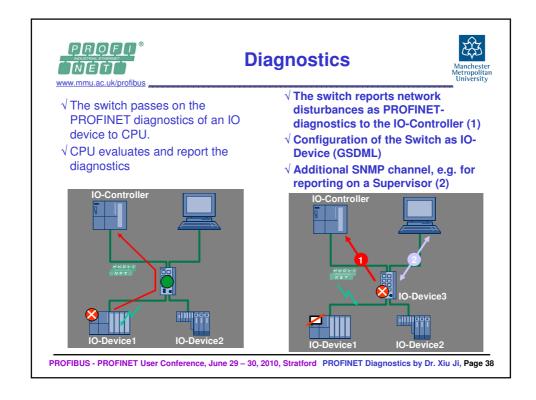
Diagnostics

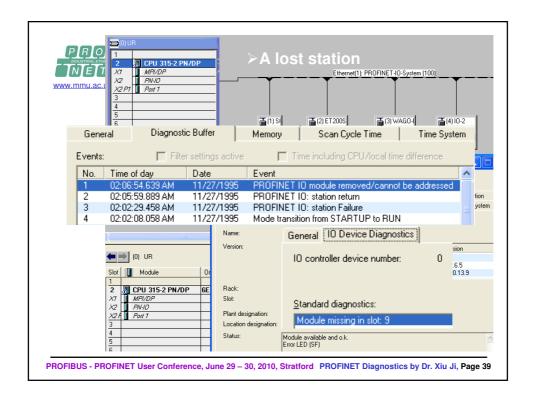
- PROFINET provides fast and thorough diagnostics covering almost every component of a PROFINET network.
- ➤ Diagnostics are structured hierarchically, starting with the device information and moving down to the ladder to the module and channel diagnostics.
- ➤ Network and system status are also available.
- ➤ In case of a fault, the station name, module number, channel number, channel type, and information about the error itself are displayed and can be accessed.

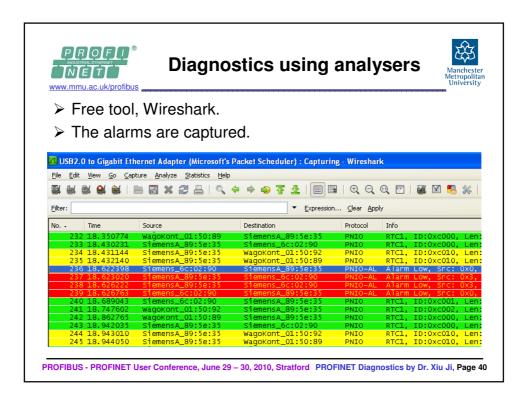
Diagnostics are similar as in PROFIBUS!

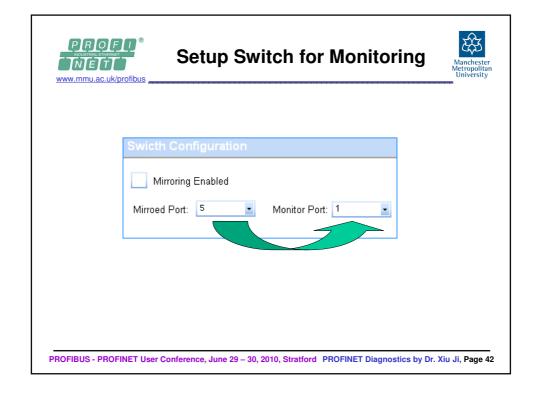

PROFIBUS - PROFINET User Conference, June 29 - 30, 2010, Stratford PROFINET Diagnostics by Dr. Xiu Ji, Page 35

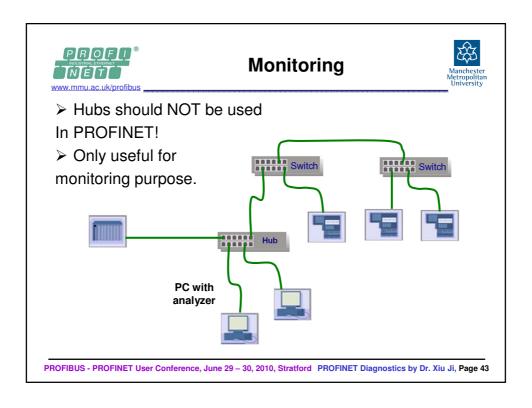


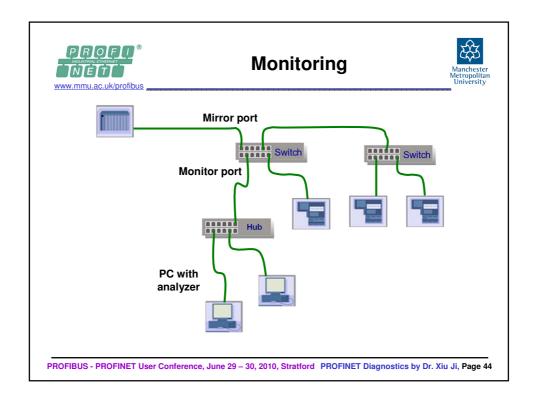

Communication faults



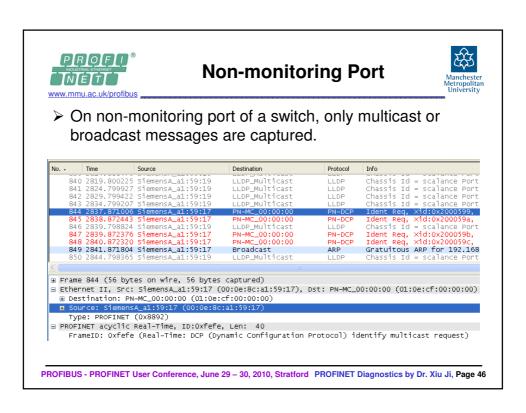

- Mainly caused by poor network wiring or layout or cable/connector deterioration.
- Can be permanent or intermittent.

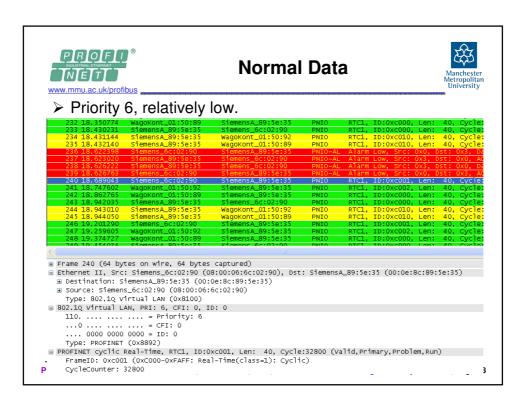



Port Mirroring




- ➤ **Port Mirroring** is used on a switch to send a copy of network packets seen on one switch port (or an entire VLAN) to a network monitoring connection on another switch port.
- $\,\succ\,$ Defining a mirror port duplicates all traffic on the mirror.
 - √ incoming and outgoing traffic
- ➤ Useful for monitoring the switch traffic on a certain port, the monitor port for diagnostic reasons.
 - √ e.g. with Ethereal / Wireshark analyser
- > Available in managed switches or as a dedicated device.





Recording

➤ Select a network interface to record telegrams/data exchange.

Alarms

> VLAN must be used. Alarms are Priority 5, higher than normal data.

```
232 18.350774 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 233 18.430231 SiemensA_89:5e:35 Wagokont_01:50:92 PNIO RTC1, ID:0xc000, Len: 40, cycle: 235 18.432140 SiemensA_89:5e:35 Wagokont_01:50:89 PNIO RTC1, ID:0xc000, Len: 40, cycle: 235 18.432140 SiemensA_89:5e:35 Wagokont_01:50:89 PNIO RTC1, ID:0xc010, Len: 40, cycle: 236 18.6;22:39 SiemensA_89:5e:35 Wagokont_01:50:89 PNIO RTC1, ID:0xc010, Len: 40, cycle: 236 18.6;22:30 SiemensA_89:5e:35 SiemensA_89:5e:35 PNIO RTC1, ID:0xc010, Len: 40, cycle: 237 18.6;30:20 SiemensA_89:5e:35 SiemensA_89:5e:35 PNIO-AL_Alarm Low, Snc: 0x3, 05t: 0x0, A0, 238 18.5;66:22 SiemensA_89:5e:35 SiemensA_6:02:90 PNIO-AL_Alarm Low, Snc: 0x3, 05t: 0x0, A0, 238 18.5;66:22 SiemensA_6:02:90 SiemensA_89:5e:35 PNIO-AL_Alarm Low, Snc: 0x0, DS: 0x3, A2, 240 18.669043 SiemensA_6:02:90 SiemensA_89:5e:35 PNIO RTC1, ID:0xc001, Len: 40, cycle: 241 18.747602 Wagokont_01:50:92 SiemensA_89:5e:35 PNIO RTC1, ID:0xc001, Len: 40, cycle: 242 18.862765 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 243 18.942035 SiemensA_89:5e:35 Wagokont_01:50:92 PNIO RTC1, ID:0xc000, Len: 40, cycle: 244 18.943010 SiemensA_89:5e:35 Wagokont_01:50:89 PNIO RTC1, ID:0xc000, Len: 40, cycle: 246 19:201290 SiemensA_89:5e:35 Wagokont_01:50:89 PNIO RTC1, ID:0xc000, Len: 40, cycle: 247 19:259605 Wagokont_01:50:92 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 19:374727 Wagokont_01:50:89 SiemensA_89:5e:35 PNIO RTC1, ID:0xc000, Len: 40, cycle: 248 1
```


Conclusion

- ➤ Static wiring test → handheld tools.
- ➤ Configuration errors → MAC addresses, device names and IP addresses.
- > Live system diagnostics
 - √ Software supplied with IO Controller
 - √ Analysers, e.g. comprehensive and easy to use → Wireshark