SIEMENS

Understanding IWLAN – even allowing for Safety

Which bits really matter? Why is 802.11 suitable for automation tasks?

© Siemens AG 2010. All Rights Reserved.

What advantages does IWLAN bring to the automation world?

SIEMENS

Many reasons for WLAN

- WLAN frees Profibus and PROFInet from cables
- bridging of distances without cables
 - e.g. between buildings
 - across obstacles (streets, rivers, lakes)
- **maintenance-free,** e.g. compare to slip rings
- higher data rates than other wireless systems
- WLAN makes data transmission with mobile machines/devices

But

- A **permanently installed cable** will have a higher availability than WLAN!
- WLAN technology is slightly different....e.g. CSMA/CA and positive acknowledgement
- WLAN channels are limited

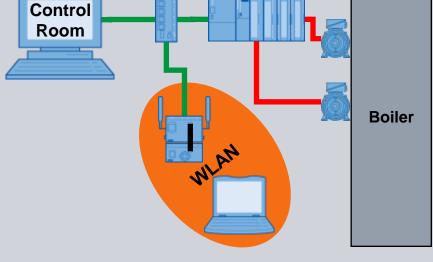
© Siemens AG 2010. All Rights Reserved. Industry Sector

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 2/30

Example 1: Wireless Access to Control Room

Requirements


 Innovate plant maintenance of sensors and actuators (maintenance with one person/ commissioning)

Ethernet

Control

Power

© Siemens AG 2010. All Rights Reserved

Page 3/30

FIBUS - PROFINET

iser conference 2010

Celebrating 20 Years of PROFIBUS

2010-02-01

Industry Sector

Example 1: Wireless Access to Control Room

Why does the Access Point "understand" the laptop?

The Access Point (AP) and laptop.....

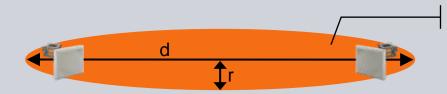
- have been set to the same wireless standard
- chat on the same frequency
- use the network name
- encrypt the messages with the same "secret code"

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 4/30

2010-02-01

Example 1: IEEE 802.11 WLAN Standards (PHY)



	IEEE 802.11b	IEEE 802.11g	IEEE 802.11a	IEEE 802.11h	IEEE 802.11n	
Frequency Range	2.4 GHz	2.4 GHz	2.4 GHz 5 GHz 5 GHz		2.4 GHz/ 5 GHz	
Range (depends on antenna and env.)	Indoor: 30 m Outdoor: 140 m	Indoor: 30 m Outdoor: 140 m	Indoor: 30 m Outdoor: 120 m	Indoor: 30 m Outdoor: 120 m	Indoor: 70 m Outdoor: 250 m	
TX Power (On The Example In EU)	Indoor and outdoor: 20 dBm	Indoor and outdoor: 20 dBm	Indoor: 23 dBm Indoor and outdoor: 23 dBm/ 30 dBm		Indoor and outdoor: 23 dBm/ 30 dBm	
Non Overlapping Channels	3	3	4	8 + 11	2,4 GHz: 3 5 GHz: 8 + 11	
Gross Data Rate	11 MBit/s	54 MBit/s	54 MBit/s	54 MBit/s	600 MBit/s	
Specifics (On The Example In EU)	because of DSSS- modulation robust			DFS mandatory, up to Ch 64 only indoor	DFS mandatory at 5 GHz	

Example 1: Physical Properties of the Frequency Ranges

	2.4 GHz				5 GHz			
Use in Networks	 common → often already occupied 				 + less common - outdoor only with DFS 			
Use In Devices	+ very common				- less common			
Free Space Loss At Different Frequencies ("Resistance" Of The Air)	1 m	2 m	10 m	n 100 m	1 m	2 m	10 n	n 100 m
	40 dB +	46 dB	60 dl	B 80 dB	47 dB -	53 dB	67 d	B 87 dB
Fresnelzone (r) At Different Distances (d)	10 m	100) m	1000 m	10 m	10	0 m	1000 m
	0.55 m -	1.7	5 m	5.55 m	0.38 m +	1.1	9 m	3.75 m

Fresnelzone (at least 40 % required)

© Siemens AG 2010. All Rights Reserved. Industry Sector

Page 6/30 2010-02-01

Example 1: Network name and Security

SIEMENS

The **SSID** (Service Set Identifier)......

- is the name of a wireless network
- can be defined freely (e.g. ",bh 1")
- must be set on the AP and the wireless client
- It can have a length limits e.g. up to **32 characters**

Radio waves are able to propagate across borders of rooms or buildings

→ Therefore it is necessary to limit the access to WLAN (authentication) and to encrypt the exchanged data

Celebrating 20 Years of **PROFIBUS**

Page 7/30

Tip: To be compatible with devices from multiple manufacturers be careful with characters within the SSID.

Example 1: Security in Terms of WLAN

2010-02-01

SIEMENS

Authentication

- authentication protects a WLAN against undesired access
- possible methods of authentication
 - open system (no authentication takes place)
 - shared Key
 - WPA-PSK + (encryption with TKIP or AES; Passphrase)
 - WPA2-PSK + + (encryption with AES (def.) or TKIP; Passphrase)
 - WPA and WPA2 can be used with authentication servers e.g.
 RADIUS, but this is uncommon in industrial environments

WPA2-PSK is the preferred authentication method!

Example 1: **Authentication and Encryption**

SIEMENS

Encryption

- **encryption protects** the data of a network
- existing encryption methods
 - WEP (weak encryption, should be avoided)
 - TKIP + (good encryption, uses changing keys)
 - AES + + (very good encryption, better than TKIP)

US - PROFINE conference 2010 **Celebrating 20 Years** of **PROFIBUS** Page 9/30

AES is the preferred encryption method

Industry Sector

Example 1: Example Settings for WLAN:

Access point

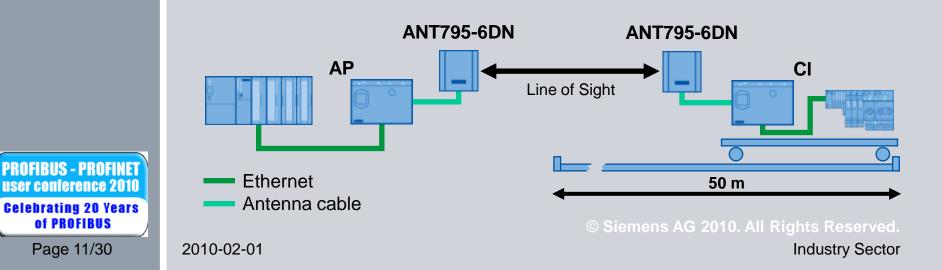
- IP-addresses
- Country code
- Enable Interface
- SSID: bh_1 (for instance)
- Mode: 5 GHz, 802.11a
- Channel 36
- Antenna: ANT795-4MR
- Admin-Password
- Auth. type: WPA2-PSK
- Cipher: AUTO
- Passphrase

Laptop/ PG

- WLAN at 5 GHz
- search for WLAN
- Passphrase

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 10/30


2010-02-01

Example 2: Automatic Guided Vehicle with PN IO

SIEMENS

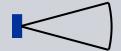
Requirements

- Wireless communication to automatic guided vehicles
- PN IO between CPU and remote I/O
- PI IO update time 64 ms
- Iength of the track: 50 m

Example 2: What are the Antennas for?

To bridge the 50 m distance reliably for PN IO!

- check internal/supplied antennas and compare to external antenna options
- for Profinet IO a reliable WLAN connection is necessary
- omnidirectional antennas can bridge up to 30 m (e.g. ANT795-4MS → "rabbit ears")
- antennas with directional characteristics are better suited for this example
- they concentrate the radio waves while sending AND receiving
 - Ionger range
 - → less interferences because of and for other WLANs


Example 2: About the mentioned Antenna Types

Different Antenna Types:

omnidirectional Antennas (e.g. ANT795-4MS – "rabbit ears")

(horizontal pattern bird's-eye view)

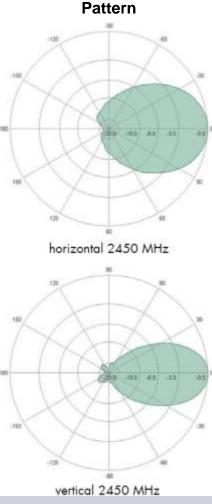
- send and receive the signal in/ from radius of 360°
- directional Antennas (e.g. ANT795-6DN)

(horizontal pattern bird's-eye view)

- send and receive the signal in/ from a sector with a specific angle (here 55 °)
- have a gain like a speaking tube but NO amplification
- they only concentrate the signal in a small lobe when sending AND receiving

PROFIBUS - PROFINET user conference 2010 Celebrating 20 Years of PROFIBUS

Page 13/30


Example 2: Example Directional Antenna

SIEMENS

Directional Antenna:

- e.g. ANT795-6DN
- Frequency range: 2.4 GHz and 5.6 GHz
- Gain: 9 dBi
- 3 dB beam width: 75°/(55°)

Siemens AG 2010. All Rights Reserved.

Page 14/30

Celebrating 20 Years of PROFIBUS

PROFIBUS - PROFINET User conference 2010

2010-02-01

Industry Sector

Example 2: Reliable WLAN by Thorough Planning

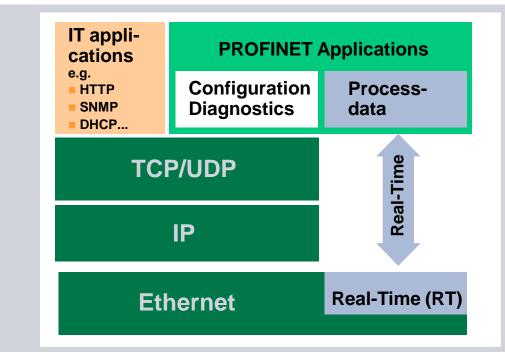
SIEMENS

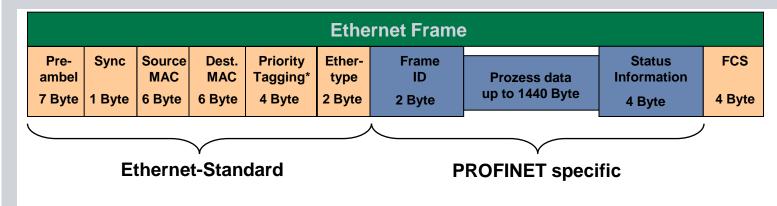
Why Radio Field Planning?

- a thorough planning of the WLAN......
 - guarantees a fast and on time commissioning of the application
 - saves recofiguring and modification of the original setup
 - achieves customer satisfaction!

Parts of a Radio field Planning for WLAN

- Site survey
 - spectrum analysis (Network analysis is not enough!)
 - define mounting points for APs and antennas
 - considers distances, obstacles, radio-properties
- Simulation packages (e.g. SINEMA E) and proof of concept re performance and post commissioning comparison


PROFIBUS - PROFINET user conference 2010 Celebrating 20 Years of PROFIBUS


Page 15/30

2010-02-01

Example 2: Structure of PROFINET Stack & Telegrams

PROFIBUS - PROFINET user conference 2010 Celebrating 20 Years of PROFIBUS

Page 16/30

2010-02-01

Industry Sector

Example 2: WLAN and Profinet IO

What special requirements has PN IO for WLAN?

- Profinet IO works with cyclic data communication
- 3 retries (default) = bus fault (BF)
- → the WLAN connection must be reliable!

"Domestic" WLAN could, however, be used for PN IO – under following conditions:

- No roaming for the Ethernet Client Module (ECM)
- The PN IO update time >= 32 ms
- max. of four WLAN Clients for each AP

Page 17/30

2010-02-01

Example 2: MAC Mode setting

The ECMs can be set to the following MAC modes:

Auto find 'Adopt MAC'

ECM adopts MAC address from first frame to pass

Set 'Adopt MAC' manually

MAC address can be edited manually

Adopt own MAC

ECM uses its own MAC address

Layer 2 Tunnel

ECM uses its own MAC address **but also the MAC addresses of the end devices** that are connected to the ECM

Example 2: Example Settings for WLAN:

Access Point

- Basic settings (IP-Address, SSID ..)
- Mode: 5 GHz, 802.11a
- Antenna Type: ANT795-6DN
- Antenna cable length: 1 m
- Antenna mode: Antenna A
- Auth. type: WPA2-PSK with Passphrase
- Transmit Power Control: 6 dB

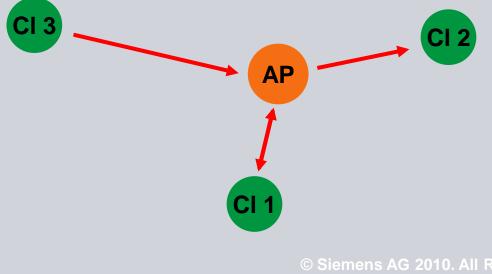
Ethernet Client Module

- Basic settings (IP-Address, SSID ..)
- Mode: 5 GHz, 802.11a
- Antenna Type: ANT795-6DN
- Antenna cable length: 1 m
- Antenna mode: Antenna A
- Auth. type: WPA2-PSK with Passphrase
- Transmit Power Control: 6 dB
- MAC mode: Auto find 'Adopt MAC'
- Background scan mode: Scan if idle
- Background scan ch. select: Enable
- Background scan channels: 36

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 19/30

2010-02-01


Example 3: Multiple PN devices behind a WLAN Client

"Domestic WLAN" \Leftrightarrow Real-time WLAN

"Domestic WLAN" - technical details

- In a "Domestic WLAN", each device transmits (AP and clients) as soon as data is pending and the channel is free ("distributed coordination")
- "Domestic WLAN" is therefore also known as DCF (distributed coordination function)

PROFIBUS - PROFINET user conference 2010 Celebrating 20 Years of PROFIBUS

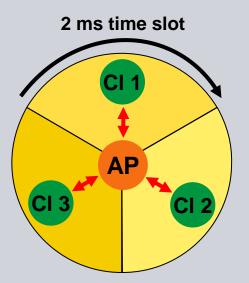
Page 20/30

2010-02-01

Example 3: "Domestic WLAN" ⇔ Real-time WLAN

"Real-time WLAN" – technical details

- In real-time WLAN, the access point coordinates radio traffic
- Real-time WLAN is therefore also known as iPCF (industrial point coordination function)
- The AP assigns each client a 2 ms time slot
- Now the AP transmits data to client 1
- Client 1 receives this and answers in turn with its data
- This process is known as "polling"


Note: "Real-time" doesn't mean "immediately" but "at a pre-determinable time" i.e. deterministic

© Siemens AG 2010. All Rights Reserved. Industry Sector

Example 3: "Domestic WLAN" ⇔ Real-time WLAN

"Real-time WLAN" – what actually happens

The AP determines the polling sequence and it cannot be influenced!

2010-02-01

Example 3: Example Settings for WLAN:

SIEMENS

Access Point

- Basic settings (IP address, SSID ..)
- System name: AP x
- Mode: 5 GHz, 802.11a
- Transmit power: 0 dB
- Antenna Type: RCoax leaky wave c..
- Antenna cable length: 1 m
- Antenna mode: Antenna A
- Public key 1: [16 ASCII symbols]
- Auth. type: Open System
- Encryption: enable
- iPCF enabled: enable
- Strong AES-CCM encryption: enable
- PNIO support enabled: enable
- PNIO Cycle: 64 ms
- Antenna pattern: Leaky/Directional ...

Ethernet Client module

- Basic settings (IP address, SSID ..)
- System name: Cl x
- Mode: 5 GHz, 802.11a
- MAC mode: Layer 2 Tunnel
- Transmit power: -6 dB
- Antenna Type: ANT793-4MN
- Antenna cable length: 1 m
- Antenna mode: Antenna A
- Background scan ch. select: Enable
- Background scan channels: 36 40 44
- Public key 1: [16 ASCII symbols]
- Auth. type: Open System
- Encryption: enable
- iPCF enabled: enable
- Strong AES-CCM encryption: enable

Page 23/30

OFIBUS - PROFINET

2010-02-01

user conference 2010 Celebrating 20 Years of PROFIBUS

PROFIsafe When used with Profibus or PROFInet

PROFIsafe is a profile for Profibus or PROFInet

- PROFIsafe uses the same ASIC as a "standard" unit but needs safety applied at the firmware/software level.
- The diagnostics for PROFIsafe are the same as for Profibus or PROFInet (whichever you are using).
- The installation rules/guidelines for PROFIsafe are the same as for Profibus or PROFInet (whichever you are using).
- PROFIsafe uses a lot of the same principles of configuration & programming that are used in the "standard" world.

© Siemens AG 2010. All Rights Reserved. Industry Sector

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS Page 24/30

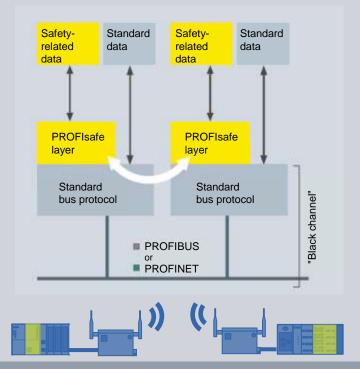
PROFIsafe WLAN with functional safety?

As mentioned previously a permanently installed cable will have better availability than a WLAN.

What should I consider when I need to use WLAN for a safety application?

- Always cable if you can. Look at WLAN if cabling isn't an option.
- Can be used for up to SIL 3/PL e (IEC 61508/62061/61511 & ISO 13849)
- Does the **availability** of WLAN suit the safety application? Number of retries?
- Does WLAN suit your reaction time for the safety application?

PROFIBUS - PROFINET User conference 2010 Celebrating 20 Years of PROFIBUS


Page 25/30

2010-02-01

PROFIsafe Failsafe communication via PROFIsafe

SIEMENS

- First communications standard developed in accordance with safety standard IEC 61508 with more than 840,000 PROFIsafe nodes implemented in over 85,000 systems
- Developed to IEC 61784-3-3, PROFIsafe is the international standard
- PROFIsafe handles potential faults (e.g. invalid addresses, delays, data loss) by means of
 - Serial numbering
 - Time monitoring
 - Authenticity monitoring
 - Additional CRC backup
- Evaluated by VBGIA and VBGIA

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 26/30

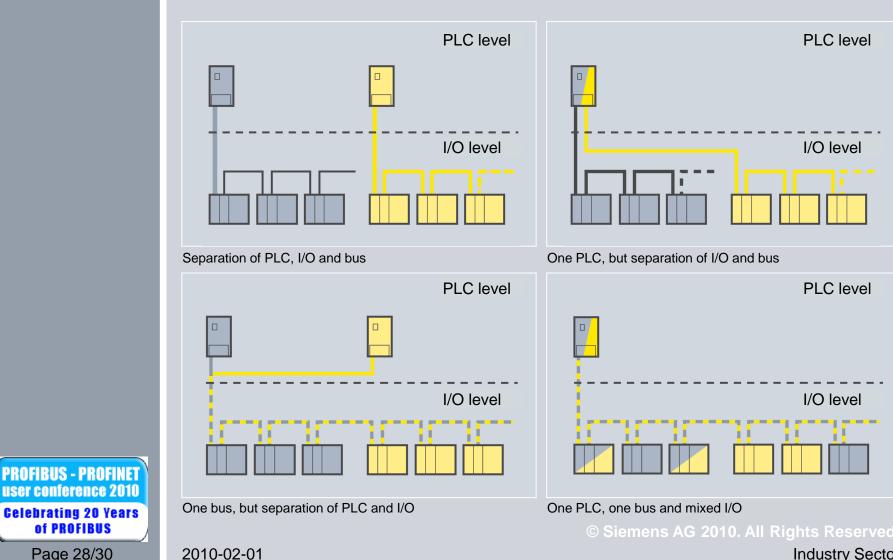
PROFIsafe supports standard and failsafe communication via <u>one</u> physical bus

© Siemens AG 2010. All Rights Reserved. Industry Sector

SIEMENS

PROFIsafe PROFIsafe Specification V2.0

Overview: Possible Errors and detection mechanism


Remedy: Failure type:	Consecutive Number	Time Out with Receipt	Codename for Sender and Receiver	Data Consistency Check
Repetition	\checkmark			
Deletion	\checkmark	\checkmark	\bigcirc	
Insertion	\checkmark	\checkmark		
Resequencing	~			
Data Corruption				~
Delay				
Masquerade (standard message mimics failsafe)	>	√	\checkmark	\checkmark
Revolving memory failure within switches	✓			

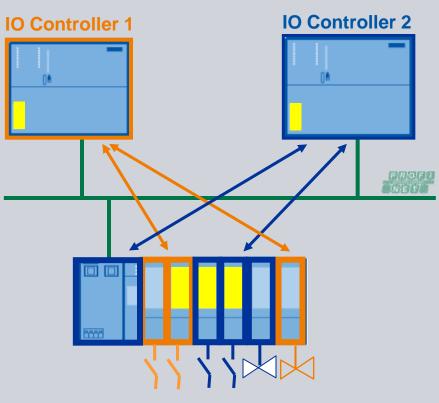
PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS Page 27/30

© Siemens AG 2010. All Rights Reserved. Industry Sector

PROFIsafe High flexibility for applications

of **PROFIBUS** Page 28/30

Industry Sector


SIEMENS

PROFIsafe PROFInet "Shared Device"

Access to one device from several controllers

- Flexible assignment of channels and modules to different controllers
- For inputs and outputs

PROFIBUS - PROFINET user conference 2010 Gelebrating 20 Years of PROFIBUS

Page 29/30

2010-02-01

PROFIsafe "Shared Device" and F-shutdown

F-IO controller IO controller **F-IO controller IO** controller Less cabling **F-shutdown** Lower hardware overhead **PROFIBUS - PROFINET** user conference 2010 Simpler engineering

Industry Sector

2010-02-01

Celebrating 20 Years of **PROFIBUS** Page 30/30

SIEMENS

SIEMENS

Thank you for your attention!

Peter Brown HelpDesk Team Leader Functional Safety Professional Siemens IA&DT

Phone: +44 161 446 - 5545

Any Questions?

© Siemens AG 2010. All Rights Reserved.